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Non-Fourier Heat Conduction Modeling in a Finite
Medium1

J. Gembarovic2,3 and J. Gembarovic, Jr.2

A novel, simple iterative algorithm is used to calculate the temperature dis-
tribution in a finite medium for the case of non-Fourier (hyperbolic) heat
conduction. In this algorithm the temperature is calculated explicitly in one
simple calculation that is repeated for each time step as the heat wave prop-
agates through the medium with constant speed. When the wave reaches
a boundary of the medium, it bounces back and moves in the opposite
direction. All simple initial and boundary conditions can be modelled. An
example of using the algorithm for the case of a finite, thermally insulated
medium is given, and the results are compared with an exact analytical solu-
tion.

KEY WORDS: non-Fourier heat conduction; numerical algorithm; tempera-
ture distribution.

1. INTRODUCTION

Heat flow (�q) in solids is generally regarded as a diffusion-like process,
which is described by the Fourier law

�q =−λgradT , (1)

where λ is the thermal conductivity and gradT is the temperature gradi-
ent. The temperature distribution is a solution of the classical (Fourier)
heat conduction equation [1]:

∂T

∂t
=α ∆T, (2)
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where α is the thermal diffusivity, ∆ is the Laplace operator and T =
T (�r, t) is the temperature at a space–time point (�r, t). Equation (2) rep-
resents a partial differential equation (PDE) of the parabolic type, and
its analytical solutions show a paradoxical behavior of infinite speed of
propagation of the thermal disturbance. Any local change in temperature
causes an instantaneous perturbation at each point of the medium, at
whatever distance from the origin. It is in contradiction with the theory
of relativity and also with known mechanisms of heat conduction.

Experiments with second sound in solid helium and in other crystal-
line solids [2], at very low temperatures [3], and at very short duration [4]
clearly showed that the heat flows as a damped wave. If the crystal struc-
ture is almost defect-free (perfect) and the conditions for the second sound
are met, then after pulse heating, an observable hump-like formation of
increased temperature (damped heat wave) moves with a constant speed
through the medium. The wave bounces back and forth from the bound-
aries while slowly dissipating its energy along the path. The damped heat
wave is described by a PDE of the hyperbolic type first derived by Maxwell
[5] and later postulated by Vernotte [6] and Cattaneo [7]

τ
∂2T

∂t2
+ ∂T

∂t
=α ∆T, (3)

where τ is the thermal relaxation time. The speed of propagation of the
thermal wave is v = √

α/τ . Equation (2) is a limiting case of Eq. (3) for
τ →0.

Analytical solutions for the non-Fourier Eq. (3) have been found only
for a limited set of geometries and boundary conditions [8]. Existing stan-
dard software for numerical calculations of the temperature distribution
is based mainly on the Fourier heat conduction equation. Therefore, it is
hard to model non-Fourier heat conduction processes in real situations for
engineers and designers without programming capabilities.

Recently, we have developed a novel, simple iterative algorithm for
approximate calculation of the temperature distribution in a finite medium
for Fourier heat conduction [9]. This paper will show that this algorithm
can also be used to calculate the temperature distribution in a one-dimen-
sional finite medium for non-Fourier heat transfer.

2. ANALYTICAL SOLUTION

The analytical solution of Eq. (3) for the temperature distribution
in an isotropic homogeneous finite medium (0 � x � L), with zero initial
temperature, adiabatically insulated boundaries, with one surface heated
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by a stepwise heat pulse of duration t1 is given by [10]

V (x, t)= 1
t1

∫ t1

0

[
F(x, t − t ′)− τ

∂F (x, t − t ′)
∂t ′

]
dt ′, (4)

where

F(x, t) = L√
ατ

exp
(

− t

2τ

) ∞∑
k=0

{
I0

[
1

2τ

√
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(
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α
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α

]
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1

2τ

√
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)2 τ

α
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t − (2kL+2L−x)

√
τ

α

]}
, (5)

H(t) is a Heaviside unit step function, and I0(z) is a modified Bessel func-
tion of the first kind of zero order.

The analytical solution for a finite medium (L = 1 cm, α =
0.025 cm2 · s−1, τ = 10 s) heated by a stepwise pulse of duration t1 = 2 s,
is shown in Fig. 1 Temperature profiles are calculated using Eq. (4) at
three different times t = t1,8t1,17t1. A dominant feature of this type of
heat transfer is a thermal wave, which is travelling through the medium,
bouncing back and forth from the boundaries, decaying exponentially with
time, and dissipating its energy along its path.

3. ALGORITHM DESCRIPTION

In our algorithm for calculation of the temperature distribution, the
medium is divided into N equal slabs of thickness ∆l =L/N . These slabs
are replaced by a perfect conductor of the same heat capacity separated
by thermal resistance ∆l/λ, so the temperature within a slab at any given
time is constant. Heat propagates from one slab to another due to the
existence of a temperature difference between the slabs. The wave takes
a certain portion (given by the inner transfer coefficient 0 < ξ < 1) of the
excessive heat energy from one slab and moves that amount to the next
one (redistribution), thus lowering the temperature difference between the
two neighboring slabs. The wave starts from the left boundary slabs and
proceeds in space from one pair of slabs to another, redistributing the
thermal energy between the slabs. When it reaches the boundary of the
medium, the wave bounces back and moves in the opposite direction in
a perpetual manner.

Slab temperatures are Ti,m ≡T (xi, tm), where xi (i =0,1,2, . . . ,N −1)
is a spatial point (middle of the ith slab), and tm =m∆t (m=0,1,2, . . . ) is
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Fig. 1. Temperature distributions in a finite medium calculated using the analytical
solution given by Eq. (4).

a discrete time point. The temperature distribution at time tm+1 when the
heat wave is marching from left to right is given by

Tn,m+1 =Tn,m − ξ(Tn,m −Tn+1,m)δn,m,

Tn+1,m+1 =Tn+1,m + ξ(Tn,m −Tn+1,m)δn,m,

for n=0,1,2, . . . ,N −1, (6)

where δn,m is the Kronecker delta. The temperature of each slab changes
twice as the wave passes the slab.

Similarly, the temperature distribution at time tm+1 when the heat
wave is moving in the opposite direction from right to left is

T2N−n,m+1 =T2N−n,m − ξ(T2N−n,m −T2N−n−1,m)δn,m,

T2N−n−1,m+1 =T2N−n−1,m + ξ(T2N−n,m −T2N−n−1,m)δn,m,

for n=N,N +1,N +2, . . . ,2N −1. (7)
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Fig. 2. Damped heat wave in a finite
medium. Inner transfer coefficient
ξ =0.95.

An example of the heat wave in a one-dimensional finite medium with
ξ = 0.95 is shown in Fig. 2. The medium is divided into N = 6 slabs. The
wave height is reduced from 10 to 3.61 units after 28 time steps. The rest
of the media is at about 1.2 units. The wave height decays exponentially
with time, similarly as in the solution given by Eq. (4). The sum of all
heights in the medium is always equal to 10, in accordance with the total
energy conservation law.

When the heat wave imitates diffusion (parabolic heat transfer), then
the wave is strongly damped (ξ <0.5) and its actual position is not impor-
tant. The time step ∆t is therefore chosen to be equal to one loop time
interval. On the contrary, the wave position is essential in the case of
hyperbolic heat transfer, when the heat wave is much less damped (ξ →1)
and moves across the medium with a constant speed. The time step in
non-Fourier heat transfer has to be equal to the heat pulse duration
(∆t = t1). The time origin is also set to t1 when the heat pulse already
entered the medium. The slab thickness ∆l is then given by

∆l =vt1 =
√

α

τ
t1. (8)

Fraction L/∆l defines the number of slabs N which should be an inte-
ger number, equal to or larger than five. In other words, the heat pulse
duration t1 should be at least five times less than the time t∗ = L

√
τ/α,
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needed for the heat wave to reach the opposite end of the medium. These
conditions limit the use of our algorithm, especially for long pulses, or
very thin layers.

The inner transfer coefficient ξ for hyperbolic heat transfer is defined
as

ξ =
(

1+ ∆t

2τ

)−1

. (9)

When the wave imitates non-Fourier heat transfer, the inner transfer coeffi-
cient is 1>ξ �0.9. It follows from Eq. 9) that the upper limit for the time
step ∆t is given by

∆t � 2
9
τ. (10)

This introduces a limit to the pulse duration in comparison with the relax-
ation time that can be modelled by our algorithm.

Figure 3a–c shows the temperature distributions in a finite medium
for the case with L = 1 cm, α = 0.025 cm2 · s−1, τ = 10 s, and t1 = 2 s. The
inner transfer coefficient is ξ =0.90909091. The initial temperature (at t =2
s) is 10 units for the first slab (from left), and the rest of the medium is
at zero temperature. There are no heat losses at the boundaries. The tem-
perature distribution calculated using our algorithm is compared with the
exact analytical solution given by Eq. (4). In non-Fourier heat transfer it
is important to know the temperature distribution in early stages after the
heat pulse, so the profiles are calculated for (a) t =4 s, (b) t =18 s, and (c)
t =32 s. It can be seen that the calculated temperatures are in good agree-
ment with the analytical values.

If there are heat losses from the medium surfaces, a part of the exces-
sive thermal energy leaves the medium, when the wave reaches the bound-
ary slabs. Temperatures of the boundary slabs are furthermore changed
due to the heat losses:

TN−1,N =TN−1,N−1 − ζ(TN−1,N−1 −TA), (11)

and

T0,2N+1 =T0,2N − ζ(T0,2N −TA), (12)

where ζ is the surface transfer coefficient and TA is the ambient tempera-
ture.

Various boundary conditions can be modelled by adjusting the sur-
face transfer coefficient. In the case ζ =1 the constant temperature (equal
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Fig. 3. Temperature distributions in a finite medium. Temper-
atures calculated using our algorithm (solid lines) are compared
with exact analytical solutions (dotted lines) given by Eq. (4). The
profiles are (a) at t =4 s; (b) at t =18 s; and (c) at t =32 s.
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to the ambient temperature) boundary condition is being simulated. An
adiabatically insulated surface is given by ζ =0. Non-linear conditions can
be also modelled, e.g., radiation from the surface, in which the rate of heat
energy leaving the surface is proportional to

σε(T 4
i −T 4

A),

where σ is the Stefan–Boltzmann constant and ε is the emissivity of the
surface. The temperature difference of the fourth power of the tempera-
tures will be used in Eqs. (11) and (12).

4. CONCLUSION

The temperature distribution in a finite medium for the case of non-
Fourier heat conduction can be calculated using a simple iterative algo-
rithm. In this algorithm the temperature is calculated explicitly in one
simple calculation that is repeated for each time step as the heat wave
proceeds through the medium with a constant speed.

The proposed algorithm can be used by engineers and designers as
a fast, easy to understand, and easy to implement alternative to existing
numerical and analytical methods. It could simplify hardware and software
needs for temperature and heat flux calculations in real applications and
open new possibilities for improving measurement and nondestructive test-
ing procedures used in this field.

REFERENCES

1. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd Ed. (Oxford University
Press, London, 1959), p. 9.

2. C. C. Ackerman and R. A. Guyer, Ann. Phys. 50:128 (1968).
3. K. Mitra, S. Kumar, A. Vedaraz, and M. K. Moallemi, J. Heat Transfer, Trans. ASME

117:568 (1995).
4. Yun-Sheng Xu and Zheng-Yuan Guo, Int. J. Heat Mass Transfer 38:2919 (1995).
5. J. C. Maxwell, Philos. Trans. R. Soc. 157:49 (1876).
6. J. Vernotte, C. R. 246:3154 (1958).
7. C. Cattaneo, C. R. 247:431 (1958).
8. D. Y. Tzou, Macro- to Microscale Heat Transfer, The Lagging Behavior (Taylor and Fran-

cis, Washington, DC, 1997).
9. J. Gembarovic, M. Loffler, and J. Gembarovic Jr., Appl. Math. Modelling 28:173 (2004).

10. J. Gembarovic and V. Majernik, Int. J. Heat Mass Transfer 31:1073 (1987).


